
we have F z > 0 and the particle of fluid accelerates near the wall of the pipe up to the 
complete establishment of the velocity W corresponding to Poiseuille flow. The maximum 
value of ma for which the inequality (23) holds for any value of z, is m2 = 5.77. Ob- 
viously the function on the right hand side of (23) is less than the function y(z/Re) 
shown in Fig. 2 for any value of z. 

Hence we conclude that when ma > 25.91, the force F z changes sign at a certain distance 
z, and in this case a particle of fluid slows down and changes direction at z = Zo. For 
the region of twist parameters 5.77 < mz < 25.91, the distance at which a fluid particle 
braked near the wall of the pipe is not large enough to lead to back flow near the wall. 

The study of the behavior of F z as a function of the distance z can be used in an 
experimental verification of the appearance of back flow near the wall. 

NOTATION 

r, z, coordinates of a point in the cylindrical coordinate system; Vr, v~ , Vz, com- 
ponents of the velocity vector in cylindrical coordinates; P, pressure of the liquid; Vj 
W, U, ~, dimensionless components of the velocity vector and pressure, respectively; 
Po, Vo, pressure and velocity of the liquid entering the pipe; g, acceleration of gravity; 
~, kinematic viscosity; R, radius of the pipe; ~o, angular velocity of rotation of the 
pipe; Re, Fp, ~, Reynolds number, separation factor, and twist parameter, respectively; 
q(z), Q(z), dimensionless functions in the formula for ~; e,_a, ~ expansion parameters 
of the function U; p, parameter in the Laplace transform; W, q , , Laplace transforms of 
the function W and the derivatives q' and Q'; Io, I=, Bessel functions of imaginary argu- 
ment of order zero and two; Jo, J2, Bessel functions of real argument or order zero and 
two; ~n, zeros of the Bessel function J~. 

i. 
2. 
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DROPLET FORMATION FROM A JET OF ONE LIQUID ENTERING ANOTHER 

V. B. Okhotskii UDC 532.529 

Wave theory has been used to derive expressions for the droplet sizes under 
various flow conditions. 

When a jet of one liquid enters another but does not mix with it, waves are formed at 
the interface, which govern the break-up into droplets. If the jet is vertical, the break- 
up occurs in droplet, jet axisymmetric, jet bending, and spraying modes. 

In droplet mode, the drops form at the end of the nozzle, which may be considered as 
agravitational wave, length % . As a drop forms, a capillary wave %a forms at the surface, 
which moves over it towards t~e nozzle. If we neglect the efflux speed and assume that 
droplet formation ends when the capillary wave has traveled half the perimeter and reaches 
the axis, while the gravitational wave at the same time has traveled the nozzle radius, we 
have, 

~D~2) wg = d/(2) wg. (1) 

Brezhnev Dnepropetrovsk Metallurgical Institute. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 54, No. 2, pp. 203-211, February, 1988. Original article submitted 
September 25, 1986. 
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Fig. i. Droplet (bubble) sizes 
in droplet (bubble) efflux for one 
liquid entering another when 
gravitational waves are signifi- 
cant: I and 2) theory (la from 
(2), Ib from (3), 2a from (5), 
and 2b from (6)); 3-6) measure- 
ments correspondingly for liquid 
in liquid, liquid in gas, gas in 
a liquid from an advanced nozzle, 
and from a hole in the wall. 

d / 2 ,  
We substitute for the capillary and gravitational-wave speeds in 
%g = ~D to get 

D l d  = (2)t~ l/3 (Bo//3.  

(i) and assume ~ 

(2) 

If d > ~(a/Apg) I/2, the surrounding medium will flow into the nozzle [i]; we assume 
then that the liquid emerges through a hole having diameter d' = ~(~/Apg) Z/=~ and define 

Did = (2)/(So//2 . (3) 

Then (2) can be used for (Bo) < ~2 and (3) for (Bo) > ~a. 

If wz cannot be neglected and we assume that there is potential flow within the drop 
along the boundary at a speed equal to the speed of efflux from the nozzle, (i) becomes as 
follows as it applies for (Bo) < 2: 

~D/(2) (we, q- w~) = d/(2) we, (4) 

while (2) and (3) correspondingly become 

D/d ---- (2) I/3 [(2) ~1/2 + (gz + P2) I/z (We)11/2/91/212/3/n2/3 (Bo) 1/3 , (5) 

Did -- (2) ~/3 [(2) (Bo) '/4 -[- (Pz -I- 02) '/2 (We)l/2/p'l / 212/~/(Bo) 2/3 �9 (6) 

The droplet flow mode evidently goes over to the jet one for 

and the drops begin to form not at the end of the nozzle but at the end of the jet section. 
For (Bo) < ~2 (7) becomes 

(Web ~ P: [(2) 3 :/2 - -  (2 / /3  (Bo)1/3/~1/6]~/(91 + P2), (8) 

and for (Bo) > ~a 
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Fig. 2. Maximum droplet sizes in axisymmetric and 
bending break=up for a jet of one liquid entering 
another: i) Dax; 2) D~be-D=be; 3) Dd. 

(We)~ "~ p~ [(2) (Bo)~/~/~x ~/~ -- (2) '/3 (Bo)'/s/~x]/6]~/(p, -I- Ps). (9) 

One applies (9) when the difference in the square brackets is positive, i.e., for 
(Bo) < (2)~/~; as this quantity is less than ~=, it is clear that the efflux is always of 
jet type for (Bo) > ~2, and (9) is then inapplicable. 

In jet mode, capillary waves arise at the end of the jet part, whose minimal length 
is defined by an expression derived in [2]. If the wave amplitude increases at a rate 
derived in [2] and becomes ~ = d/2 during the advance of the end of the jet by a distance 
equal to the wave length, one gets a drop formed at the end of the jet part having size 

O/d = (3)']3 (pl/p2) el9 [11(2/12 ~,12 ~; (We)lie + (2)T/~3/21~ (We)l (Lp)~/2]2/9 (10) 

f o r  (Bo) < 2 o r  
m 

Did = (37113 (pa/p~) 2/9 [~ll~/(2)!t~(We)V 2 (Bo) II~ ~-. (2)712n3/2/~(We)a (Lp)~/2] 2/9 (11) 

f o r  (Bo) >_ ~2. 

These  c o n d i t i o n s  c o r r e s p o n d  to  a x i s y m m e t r i c  b r e a k - u p .  

As [ 2 ] , X  ~ a ,  a x i s y m m e t r i c  b r e a k - u p  p e r s i s t s  w h i l e  k > d / 2 ,  s i n c e  o t h e r w i s e  drop fo rma-  
t i o n  does not go to completion. For k < d/2, there is a transition from axisymmetric mode 
to bending decomposition because the jet loses stability. If (Bo) < ~2, this occurs for 

(We)t/.~ pl/~Xl/2 [~p~ + [p~#x~'p~ + (2) 5 ~x3/2 Pl/~ (LP)~/2 p~]l/2, (12) 

and i f  (Bo) _> zr 2,  f o r  

(We h ~ (Bo) 1/' p!/nl3p= + [(Bo//~- p~/n2~p~ _{_ (2)5 (Bo) 3/4 Pd[~ (Lp)I/2 p~]li2. (13) 

In bending mode, one gets short waves, I = 3~d(px + p2)/(We)xpa [3], and long ones, 
= ~d [4], no matter what the direction of motion. One can assume that the liquid 

emerging into a gas, where O, >> 02, allows one to neglect a by comparison with I, whereas 
a = d/2 for a liquid emerging into a liquid [4]. 

If one approximates the sinusoidal wave profile in the last case as straight-line 
segments joining the nodes and antinodes, the drop size formed on spheroidization for short 
waves is 

D/d ~ (3)2/3~z 113 (Pl q- P~)l13/(2)l13P~/3 (We)]/s , (14) 

and for long ones 

Did ~ (3) I/3 (4 + n2) 1/~/(2) ' / 3  ~ 1.78, 

wh ich  i s  somewhat l e s s  t h a n  t h e  more a c c u r a t e  s o l u t i o n .  

(15) 
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The drops move in the surrounding liquid with a speed equal to that of the wave 
moving on the nozzle axis in bending break-up. If the length of the wave sinusoid is l, 
the wave is displaced by ~ when the liquid travels that distance at the nozzle speed wx, 
so correspondingly for short and long waves 

Wie~Wl ,  (16) 

~}~e ='~1/(4-Ji-~2)|/2" (17) 

The following is the condition for droplet break-up in an inviscid liquid moving in 
another liquid [5]: 

(We) ~ p~W~e D/~ ~ (2)5 ~/(3) 3 ~, (18) 

and on substitution for the droplet size from (14) and (15) and for the speed from (16) 
and (17) we get for short and long waves correspondingly 

(We)1/> (2) 8 ~ [p~IP~ (Pt q- P2)] 1/21(3) 1 i/2 ~3/2 (19) 

(We)l ~ (2) 1613 (4 q- =z)51~ p1/(3)1913 =P2. (20) 

The (We), d e f i n e d  by (20) a re  l e s s  than  t h o s e  t h a t  (12) and (13) show shou ld  be a t -  
t a i n e d  for bending break-up. Then drops formed by such break-up from long waves should 
themselves break up during subsequent movement. Calculations from (19) and (12)-(13) 
show that droplets formed at short wave lengths begin to break up for (We), somewhat 
larger than those for bending break-up. As the break-up occurs in a time during which the 
drop is retarded, the right sides in (19) and (20) should be considered somewhat under- 
estimates, and one cannot obtain a solution in explicit form for the maximum stable diameter 
from (18). 

In spraying mode, not only do the drops formed by bending break-up themselves break 
up but so does the jet by a wave closure mechanism, with the waves formed at the surface 
as a result of the motion relative to the medium at Wje [5]. 

Then if bending break-up sets in and (We)x rises further, the large drops first 
break up and then the small ones, and the jet soon degenerates to a spray. The resulting 
hydrodynamic processes are complicated, and the results cannot be evaluated theoretically. 

These expressions have been compared with measurements on drops formed by vertical 
jets of liquid in liquid [6-14], horizontal liquid jets entering gases [3, 6, 15-19], 
vertical ones entering gases [i0, 20-22], vertical gas streams entering liquids at very 
low speeds from nozzles inserted in the liquid [23-30], or from nozzles placed on a level 
with the wall [31-34], as well as with data on the modes of interaction and their changes 
in liquid-liquid systems [7, 35-37], and liquid-gas ones [38, 39]. 

In [14], an attempt was made to unify the theory of drop and bubble formation for a 
jet of one liquid entering another on the basis of force balance. In Fig. I, the wave 
theory is used for droplet (or bubble) outflow where gravitational forces are significant. 
The measurements for liquid--liquid, liquid--gas, and gas--liquid systems [23-34] mainly fall 
between lines la and 2a or 2b, which have been derived for the maximum possible (We): 
corresponding to this flow mode. When one knows the (We) 1 dependence of D/d (indicated by 
arrows), the measured values for low efflux speeds lie near the lower theoretical limit, 
and for high speeds near the upper one. Such information is lacking for most of the data 
here, so one supposes that the position close to the upper boundary is related not only 
to theory errors but also to the data being obtained for fairly high efflux speeds. For 
(Bo) > ~2 as D < d, one should take w:' as the speed of the liquid that accelerates the 
capillary wave, which is the larger than w~ the smaller the drop diameter by comparison 
with the nozzle one. As we have only restricted information on the flows within the drops, 
it is not possible to correct (6); to a first approximation, it is likely that wl ' ~w~d2/D 2. 

For gas bubbles formed at a nozzle with a fairly thick wall, it is found that the 
base of the bubble slides over the wall during formation, and this applies even more to 
holes in a wall. Then the path traveled by a gravitational wave and ending in bubble 
formation is not the d/2 supposed for (i) but a somewhat larger distance, which increases 
the formation time and size for the resulting bubble (Fig. i). If one knows the relation 
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between the bubble base radius and the wetting angle for a particular outflowing liquid, 
surrounding liquid, and wall system, one can use the bubble (droplet) dynamics to derive 
D/d as a function of (Bo) for a gas (liquid) entering from a hole in the wall. 

Then if w, § 0 and one has to consider gravitational waves, the expressions derived 
from wave theory describe the droplet and bubble flow modes. Previously, the wave theory 
has been used [40] to derive expressions for the subordinate state in bubble flow where 
increase in w,, size reduction, and increased capillary-wave speed enable one to neglect 
gravitational waves. It has proved impracticable to perform a generalization for these 
speeds and larger ones for gas entering a liquid and for a liquid entering a gas, when one 
factor here is evidently the relation between the inertia factors for the interacting 
.media, which differ by several orders of magnitude, particularly when the efflux speed is 
decisive. 

As the efflux speed for a liquid increases, there is a transition from droplet to 
jet flow under certain conditions [7, 9, 35, 38, 39], and one gets a jet section with a 
certain length. These conditions have been described empirically [9, 38] or from certain 
theoretical concepts [35, 39]. 

From the wave-theory viewpoint, the transition to jet flow occurs when (8) is met, 
which for a liquid entering a liquid or a gas describes the upper limit to the observed 
relation between (We), and (Bo), as is evident from [7, 9, 35] as well as [38, 39]. One 
can compare the transition conditions provided by (12) with those found in [36, 37] for 
the transfer from axisymmetric to bending break-up; it is found that (12) describes the 
lower limit tO the measurements. For (Bo) < 0.26-0.28, the (We), derived from (12) are 
less than those from (8), which causes a delay inlthe transition to bending break-up and 
leads to degeneration in axisymmetric break-up. For (Bo) + ~2 which occurs for o + O, as 
in experiments [13], the droplet formation appears to degenerate into turbulence, which 
also delays the transition to bending break-up. 

Figure 2 shows the droplet size in axisymmetric and bending break-up for a liquid-- 
liquid system. We have taken the ratio of the actual (We)1 to the value required by (12) 
for transition to bending break-up, (We)be, as index. The observed maximum sizes have 
been referred to the diameters calculated from (i0), (14), and (15) for the axisymmetric 
case Fax , the bending case due to short waves D*be, and long waves D2be. In the latter two 
cases, the sizes are represented by ranges. For (We)be < (We)je , when there is delay in 
bending break-up, the efflux occurs in droplet mode, and the ratio of the observed maximum 
size to that calculated from (5) is denoted by D d. 

Figure 2 shows that in the axisy~metric state, with (~)~ ~ i, Fax is close to one, so 
(i0) describes the maximum drop sizes for these conditions satisfactorily. 

In bending break-up for (W-e), ~ 1-3, the largest droplets are formed mainly by the 
jet breaking up into segments corresponding to the length of the short waves, as is clear 
from the upper limit to Dbe corresponding to D*be being close to one. For these condi- 
tions~ the maximum drop size is given by (14). For (~)I < 3, the values given by (i0) 
and (14) are similar. 

For (~), > 3 in bending break-up, the sizes are in a range whose lower limit is pro- 
vided by (14) and the upper by (15); the higher (~)1, the closer are the maximal sizes to 
the upper limit found in measurements, and calculations from (15) are justified for 
(~)~ ~ i0'-i0 ~. Then the larger (We) l, the more likely it is that drops are formed by 
long-wave break-up. The calculation accuracy is here lower than previously because of 
break-up in the droplets on attainment of the (We), defined by (19) and (20). 

For (We)je > (We)be, Fig. 2 shows that Dd = i, and the jet emerges in droplet mode for 
all available measurements, while the size can be determined from (5) at least up to 

(We), = i0. 

For the liquid--gas case, nearly all the maximum-size measurements for axisymmetric 
and bending break-up relate to horizontal jets and small (Bo). 

Here axisymmetric break-up implies that (i0) gives very large drops because 02 is 
small (curves 2a-2c in Fig. 3). On the other hand, the Rayleigh break-up [1] occurs more 
rapidly and the droplet sizes are much less. Therefore, in [3, 6, 15, 16], in most cases 
the maximum size wasclose to the theoretical D = 1.89d. However, in some measurements 
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[16] and [19], larger drops were obtained corresponding to the (i0) sizes. In fact, 
Rayleigh axisymmetric break-up is accompanied in some cases by axisymmetric break-up due 
to capillary waves, which can be described by (i0), and experiment reveals this as occasion- 
al doubled or tripled droplets. 

Jet flow in vertical jets means that the (5) sizes are less than the (i0) ones because 
0= is small; therefore, even in jet mode, droplets can be formed via gravitational waves 
if the capillary waves are less significant because of the low surface tension. Measure- 
ments [20, 21] at high (Bo) give maximal sizes for vertical jets corresponding, as regards 
order of magnitude and dependence on (We)z, to (5). Consequently, in axisymmetric break-up, 
the Rayleigh state does not always apply, which had been assumed previously. 

In bending break-up for a liquid emerging into a gas, the maximal sizes found in [17] 
agreed well with (14) (curve 3a in Fig. 3), whereas the measurements of [18] for the same 
(We)~ corresponded mostly to (15) (curve 3b) and only in isolated cases tended to those 
from (14). The variation in mean size with (We) 1 according to [22] is qualitatively in 
accordance with (14) but with sizes less than the maximal ones by an order of magnitude. 
Therefore, the jet breaks up on long and short waves, as for a liquid entering a liquid. 

It is evident that the break-up occurs in the same way in bending mode. The drops 
spheroidize, and as (20) is always obeyed, while (19) is so when the (We) 1 given by (12) 
and (13) slightly exceeds the value for bending break-up, these drops themselves split up 
to form a size spectrum. 

The wave theory enables one to classify all the cases of break-up for a jet of liquid 
entering another liquid or a gas. At very low efflux speeds, gravitational waves partici- 
pate. Then the droplet and bubble states can be combined in one model described by (2)-(5). 
In axisymmetric break-up for a liquid entering a liquid, the jet splits up because capillary 
waves grow, as (I0) and (ii) show, while when a liquid enters a gas, the model describes 
the formation of duplicated and triplicated droplets, which are characteristic of Rayleigh 
break-up in that state. If the surface tension is very low and the Bond number is large, 
gravitational waves may be important for values of the Weber number characteristic of 
axisymmetric break-up, and then one can calculate the maximum size from (5); this also 
occurs when there is a delay in transition to bending break-up. In bending break-up, the 
jet splits up into segments corresponding to short and long waves (see (14) and (15)). 
When a liquid enters a liquid, the second will at first predominate as the Weber number 
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increases, while the first evidently will predominate for a liquid entering a gas. When 
bending break-up occurs, the first droplets split up into secondary smaller ones, and this 
becomes more pronounced as the Weber number increases. These processes evidently determine 
the droplet sizes in spraying. 

NOTATION 

(We) 1 ~ plw~2d/o; (Bo) ~ A~gd2/~; (Lp)~ ~ p~do/p,~; k, ~, and w, wavelength, amplitude, 
and speed; d, nozzle diameter; D, ratio of actual drop diameter to theoretical value; D, 
drop diameter; w~, jet efflux'velocity; p and ~, liquid density and viscosity; Ap, density 
difference between liquid and medium;__o, interfacial tension; Wje , speed of jet element 
along nozzle axis in bending mode; (We)l, ratio of actual value to that calculated from 
(12); 8, constant from [i, 2] (8 = 0.3). Subscripts: g, gravitational; o, capillary; 
~, emerging liquid; 2, surrounding medium; je, jet; d, drop; ', within drop; ax, axisym- 
metric; be, bending. 
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